Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 647
Filtrar
1.
J Ethnopharmacol ; 328: 118003, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38484957

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Pfaffia glomerata (Spreng.) Pedersen, Amaranthaceae, is found in South America, mainly in Brazil, where it is considered a species of great medicinal interest owing to its popular use as a tonic, aphrodisiac, anti-inflammatory, and analgesic. These properties can be attributed to the presence of the phytosteroid, 20-Hydroxyecdysone (ß-ecdysone), the main compound found in its roots. AIM OF THE REVIEW: This review aims to provide information about the botanical characteristics, ethnomedicinal uses, the phytochemistry, the biological activities, and the biotechnology of P. glomerata, an important species to local communities and groups researching medicinal plants of South America. MATERIALS AND METHODS: The information available on P. glomerata was collected from scientific databases (ScienceDirect, PubMed/MEDLINE, SciELO, and Scopus) until June 7, 2023, using the search terms "Pfaffia glomerata", "Pfaffia glomerata (Spreng.) Pedersen", and "Brazilian ginseng". The review includes studies that evaluated the botanical, ethnopharmacological, and phytochemical aspects, biological properties, nutraceutical uses, and the application of biotechnology for improving the biosynthesis of metabolites of interest. RESULTS: A total of 207 studies were identified, with 81 articles read in full. Seventy-six studies were included for qualitative synthesis. Overall, 40 compounds belonging to different classes are presented in this review, including ecdysteroids, triterpenes, saponins, flavonoids, anthraquinones, tannins, coumarins, alkaloids, and polysaccharides. Among them, flavonoids, anthraquinones, tannins, coumarins, and alkaloids were only putatively identified. ß-Ecdysone, triterpenes, saponins, and polysaccharides are the chemical components most frequently identified and isolated from P. glomerata and possibly responsible for ethnopharmacological use and the biological activities of this species, with important in vitro and in vivo activities, such as anti-inflammatory, antidepressant, aphrodisiac, analgesic, gastroprotective, antioxidant, and prebiotic. CONCLUSIONS: This review summarizes discussions about the P. glomerata species, highlighting its ethnopharmacological, chemical, biotechnological, and nutraceutical importance. New scientific studies on this species are encouraged in the search for new therapeutic molecules with pharmaceutical potential and nutraceutical applications.


Assuntos
Alcaloides , Amaranthaceae , Afrodisíacos , Botânica , Saponinas , Triterpenos , Etnofarmacologia , Ecdisterona , Taninos , Amaranthaceae/química , Brasil , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/uso terapêutico , Prebióticos , Analgésicos , Antraquinonas , Anti-Inflamatórios , Cumarínicos , Flavonoides , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Fitoterapia
2.
J Pharm Pharmacol ; 76(4): 307-326, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38243389

RESUMO

OBJECTIVES: Oligo-/polysaccharides from Cyathula officinalis Kuan (COPs) and Achyranthes bidentata Blume (ABPs) have attracted researchers' attention in the fields of healthy food supplements and traditional Chinese medicine (Niúxi) due to their multiple bioactivities combined with their nontoxic and highly biocompatible nature. The purpose of this paper was to provide a systematic and comprehensive overview of the extraction, purification, and structural analysis methods, chemical characteristics, biological activities, and structure bioactivity relationship. Furthermore, the possible development trends and perspectives for future research, and traditional uses of Niúxi are also summarized. METHODS: All the information was gathered from a library search and scientific databases. KEY FINDINGS: Although COPs and ABPs are derived from different plants, they have similar structural features in type, structure, and glycosidic linkage patterns and biological activities in vivo and in vitro. However, there are differences in monosaccharide compositions, which can be used as an identification mark. CONCLUSIONS: As traditional Chinese herbal medicine, C. officinalis and A. bidentata have similar pharmacological activities. The COPs and ABP possess wide pharmacological effects such as antitumor, antioxidant, anti-osteoporosis, and anti-inflammatory. Meanwhile, the biological activity and structure-activity relationship of purified COPs and ABPs are less studied, future research should focus on them.


Assuntos
Achyranthes , Amaranthaceae , Osteoporose , Achyranthes/química , Polissacarídeos/farmacologia , Polissacarídeos/química
3.
Environ Res ; 248: 118348, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38295976

RESUMO

The antimicrobial, antidiabetic, and anti-inflammatory activities efficiency of Aerva lanata plant extracts (aqueous (Aqu-E), acetone (Ace-E), and ethanol (Eth-E)) were investigated in this study. Furthermore, the active molecules exist in the crude extract were characterized by UV-Visible spectrophotometer, Fourier transform infrared (FTIR), High-performance liquid chromatography (HPLC), and Gas Chromatography-Mass Spectrometry (GC-MS) analyses. The preliminary phytochemical study revealed that the Ace-E restrain more phytochemicals like alkaloids, saponins, anthraquinone, tannins, phenolics, flavonoids, glycosides, terpenoids, amino acid, steroids, protein, coumarin, as well as quinine than Aqu-E and Eth-E. Accordingly to this Ace-E showed considerable antimicrobial activity as the follows: for bacteria S. aureus > E. coli > K. pneumoniae > P. aeruginosa > B. subtilis and for fungi T. viride > A.flavus > C. albicans > A.niger at 30 mg ml concentration. Similarly, Ace-E showed considerable antidiabetic (α-amylase: 71.7 % and α-glucosidase: 70.1 %) and moderate anti-inflammatory (59 % and 49.8 %) activities. The spectral and chromatogram studies confirmed that the Ace-E have pharmaceutically valuable bioactive molecules such as (Nbutyl)-octadecane, propynoic acid, neophytadiene, and 5,14-di (N-butyl)-octadecane. These findings suggest that Ace-E from A. lanata can be used to purify additional bioactive substances and conduct individual compound-based biomedical application research.


Assuntos
Alcanos , Amaranthaceae , Anti-Infecciosos , Acetona , Hipoglicemiantes , Escherichia coli , Staphylococcus aureus , Amaranthaceae/química , Antioxidantes , Antibacterianos
4.
Plant Cell Environ ; 47(2): 585-599, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37899642

RESUMO

A number of invasive plant species, such as Alternanthera philoxeroides, have been documented to be able to accumulate trace metal elements in their tissues. Since metal accumulation in plants can serve as a defence against herbivores, we hypothesized that metal pollution will increase herbivore resistance of metal-accumulating invasive plant species and such a benefit will grant them a competitive advantage over local co-occurring plants. In this study, we compared the differences in plant growth and herbivore feeding preference between A. philoxeroides and its native congener Alternanthera sessilis in single and mixed cultures with and without soil cadmium (Cd) pollution. The results showed that A. philoxeroides plants were more tolerant to Cd stress and accumulated more Cd in the leaves than A. sessilis. Cd exposure increased the resistance of A. philoxeroides against a specialist and a generalist herbivore compared with A. sessilis. Competition experiments indicated that Cd stress largely increased the competitive advantage of A. philoxeroides over A. sessilis with or without herbivore pressures. The differences in herbivore resistance between the two plant species under soil Cd stress are most likely due to the deterring effect of Cd accumulation and Cd-enhanced mechanical defences rather than changes in leaf specialized metabolites.


Assuntos
Jacarés e Crocodilos , Amaranthaceae , Animais , Cádmio/toxicidade , Herbivoria , Plantas , Espécies Introduzidas , Solo
5.
Environ Sci Pollut Res Int ; 31(4): 5784-5806, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38129728

RESUMO

Intensive industrial activities have elevated chromium (Cr) concentrations in the environment, particularly in soil and water, posing a significant threat due to its cytotoxic and carcinogenic properties. Phytoremediation has emerged as a sustainable and economical alternative for detoxifying pollutants. In this context, an attempt has been made to assess the efficacy of Cr remediation by the invasive plant Alternanthera tenella Colla. The study investigated morphological, anatomical, and physiological adaptations in plant tissues in response to 240 µM of K2Cr2O7, considering elemental distribution patterns and bioaccumulation potential. Growth parameter assessments revealed a notable 50% reduction in root elongation and biomass content; however, the plant exhibited a comparatively higher tolerance index (47%) under Cr stress. Chromium significantly influenced macro and micro-elemental distribution in plant tissues, particularly in roots and leaves. Structural modifications, including changes in the thickness and diameter of xylem walls in the root, stem, and leaf tissues of Cr-treated A. tenella, were observed. Distinct cell structural distortions and Cr deposit inclusions in the xylem wall and inner parenchyma cells were distinct. Under Cr stress, there was a reduction in pigment content and metabolites such as proteins and soluble sugars, while proline, phenol, and malondialdehyde showed a twofold increase. The concentration of Cr was higher in the shoots of A. tenella (185.7 mg/kg DW) than in the roots (179.625 mg/kg DW). With a high BCFroot value (16.23) and TF > 1, coupled with effective mechanisms to cope with metal stress, A. tenella emerges as an ideal candidate for chromium phytoextraction.


Assuntos
Amaranthaceae , Poluentes Ambientais , Poluentes do Solo , Cromo/análise , Poluentes do Solo/análise , Antioxidantes/metabolismo , Amaranthaceae/metabolismo , Poluentes Ambientais/metabolismo , Biodegradação Ambiental , Raízes de Plantas/metabolismo
6.
Protein J ; 42(5): 519-532, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37598128

RESUMO

Amaranthaceae α-amylase inhibitors (AAIs) are knottin-type proteins with selective inhibitory potential against coleopteran α-amylases. Their small size and remarkable stability make them exciting molecules for protein engineering to achieve superior selectivity and efficacy. In this report, we have designed a set of AAI pro- and mature peptides chimeras. Based on in silico analysis, stable AAI chimeras having a stronger affinity with target amylases were selected for characterization. In vitro studies validated that chimera of the propeptide from Chenopodium quinoa α-AI and mature peptide from Beta vulgaris α-AI possess 3, 7.6, and 4.26 fold higher inhibition potential than parental counterparts. Importantly, recombinant AAI chimera retained specificity towards target coleopteran α-amylases. In addition, to improve the inhibitory potential of AAI, we performed in silico site-saturation mutagenesis. Computational analysis followed by experimental data showed that substituting Asparagine at the 6th position with Methionine had a remarkable increase in the specific inhibition potential of Amaranthus hypochondriacus α-AI. These results provide structural-functional insights into the vitality of AAI propeptide and a potential hotspot for mutagenesis to enhance the AAI activity. Our investigation will be a toolkit for AAI's optimization and functional differentiation for future biotechnological applications.


Assuntos
Amaranthaceae , Metionina , Mutagênese , Engenharia de Proteínas , alfa-Amilases
7.
Cent Nerv Syst Agents Med Chem ; 23(2): 126-136, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37608652

RESUMO

BACKGROUND: The primary phytoconstituents reported to have neuroprotective effects are flavonoids and phenolic compounds. Aerva persica roots are reported to be rich in flavonoids and phenolic compounds. Therefore, this study aimed to explore the nootropic potential of Aerva persica roots. OBJECTIVE: The objective of this study was to evaluate the nootropic potential of Aerva persica roots against D-galactose-induced memory impairment. METHODS: In this study, the roots of Aerva persica were extracted with 70% ethanol. The obtained extract was evaluated for total phenolic content using the Folin-Ciocalteu method and total flavonoid content using the aluminium chloride colorimetric assay. Afterward, the acute oral toxicity of the extract was determined following the Organisation for Economic Co-operation and Development (OECD) guideline 423. Additionally, two doses of Aerva persica (100 and 200 mg/kg body weight (BW)) were evaluated for their nootropic potential against D-galactose-induced memory impairment. The nootropic potential of the crude extract was assessed through a behavioural study and brain neurochemical analysis. Behavioural studies involved the evaluation of spatial reference- working memory using the radial arm maze test and the Y-maze test. Neurochemical analysis was performed to determine the brain's acetylcholine, acetylcholinesterase, glutathione (GSH), and malondialdehyde (MDA) levels. RESULTS: The total phenolic content and total flavonoid content were found to be 179.14 ± 2.08 µg GAE/mg and 273.72 ± 3.94 µg QE/mg, respectively. The Aerva persica extract was found to be safe up to 2000 mg/kg BW. Following the safety assessment, the experimental mice received various treatments for 14 days. The behavioural analysis using the radial maze test showed that the extract at both doses significantly improved spatial reference-working memory and reduced the number of total errors compared to disease control groups. Similarly, in the Y-maze test, both doses significantly increased the alteration percentage and the percentage of novel arm entry (both indicative of intact spatial memory) compared to disease control. In neurochemical analysis, Aerva persica at 200 mg/kg significantly normalised the acetylcholine level (p<0.0001) and GSH level (p<0.01) compared to disease control. However, the same effect was not observed with Aerva persica at 100 mg/kg. Additionally, Aerva persica at 200mg/kg BW significantly decreased the acetylcholinesterase level (p<0.0001) and decreased the brain's MDA level (p<0.01) compared to the disease control, whereas the effect of Aerva persica at 100 mg/kg BW in reducing acetylcholinesterase was non-significant. CONCLUSION: Based on the results, it can be concluded that the nootropic potential of Aerva persica was comparable to that of the standard drug, Donepezil, and the effect might be attributed to the higher content of flavonoids and phenolic compounds.


Assuntos
Amaranthaceae , Nootrópicos , Camundongos , Animais , Nootrópicos/farmacologia , Galactose/toxicidade , Acetilcolinesterase , Acetilcolina/efeitos adversos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Glutationa/efeitos adversos , Etanol , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Aprendizagem em Labirinto
8.
Microsc Res Tech ; 86(12): 1691-1698, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37622437

RESUMO

Microscopic techniques can be applied to solve taxonomic problems in the field of plant systematic and are extremely versatile in nature. This study was focused on the new approaches to visualizing the imaging, tool to cover the micro-structural techniques applied to the pollen study of Amaranthaceae floral biology. In this detailed study, we used light microscopy and scanning electron microscopy to examine the shape and changes in pollen of 16 types of Amaranthaceae plants from the salty arid zone of Riyadh Saudi Arabia. We observed subtle variations among the studied species through meticulous examination of morpho-palynological features such as symmetry, size, shape, pore ornamentation, and exine characteristics. The pollen grains were round and had rough or prickly outer coverings. They had different numbers of tiny pores; some were slightly sunken. These findings were utilized to develop a pollen taxonomy key, facilitating accurate identification and classification of Amaranthaceous species. Our results shed light on the taxonomic significance of pollen morphology for species differentiation within the Amaranthaceae family. Furthermore, this study provides valuable insights into the influence of geographical and ecological factors on pollen diversity and evolution. This study of pollen imaging visualization of Amaranthaceous species contributes to the opportunity for taxonomic evaluation and fill knowledge gaps in studies of Amaranthaceous flora identification using classical microscopic taxonomic tools for their accurate identification. RESEARCH HIGHLIGHTS: The pollen characters of selected Amaranthaceae species were visualized using scanning electron microscopy to observe sculptural wall pattern. The comprehensive Amaranthaceous pollen examination approach allowed us to accurately identify their micromorphology. This high-resolution imaging technique provided detailed insights into the surface structures and ornamentation of the pollen grains.


Assuntos
Amaranthaceae , Pólen , Microscopia Eletrônica de Varredura , Pólen/ultraestrutura , Arábia Saudita
9.
Plant Physiol Biochem ; 202: 107966, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37586182

RESUMO

Clonal plants are able to support the growth of their ramets in stressful environments via clonal integration between the ramets. However, it remains unclear whether the developmental status of stressed ramets affects the role of clonal integration. Here, we explored the effects of clonal integration at both the ramet level and the whole clonal fragment level when the apical ramets (younger) and basal ramets (older) were subjected to different concentrations of cadmium contamination. We grew pairs of ramets of Alternanthera philoxeroides, which were connected or disconnected by stolon between them. The apical and basal ramets were either uncontaminated or individually subjected to Cd contamination at concentrations of 5 mg kg-1 and 50 mg kg-1, respectively. Our results showed that clonal integration significantly promoted the growth of apical ramets subjected to Cd contamination. More importantly, under high Cd treatment, clonal integration also had a significant positive effect on the fitness of the whole clonal fragments. However, clonal integration did not affect plant growth when basal ramets were subjected to Cd contamination. Our study reveals the influence of the developmental status of stressed ramets on the role of clonal integration in heterogeneous heavy metal stress environments, suggesting that clonal integration may facilitate the spread of A. philoxeroides in Cd-contaminated habitats.


Assuntos
Amaranthaceae , Cádmio , Cádmio/toxicidade , Ecossistema , Células Clonais , Biomassa
10.
Sci Rep ; 13(1): 13756, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612314

RESUMO

The secondary metabolites of indigenous plants have significant allelopathic inhibitory effects on the growth and development of invasive alien plants. Methyl palmitate (MP) and methyl linolenate (ML) were used as exogenous allelopathic substances. The research investigated the differences of inhibitory effects of MP and ML on the growth of seedlings of Alternanthera philoxeroides, and calculated their morphological characteristics, biomass, physiological indicators and the response index (RI). The synthetical allelopathic index (SE) of 1 mmol/L MP was the smallest (- 0.26) and the allelopathic inhibition was the strongest; therefore, it was selected as a 13C-labeled allelochemical. The distribution of 1 mmol/L MP in different parts of A. philoxeroides and the correlation between the biomass ratios of roots, stems and leaves and the 13C content were studied by 13C stable isotope tracing experiments. Atom percent excess (APE) between roots, stems and leaves of A. philoxeroides treated with 1 mmol/L MP were significantly different in terms of magnitude, with leaves (0.17%) > roots (0.12%) > stems (0.07%). The root, stem and leaf biomass ratios of invasive weeds had great significant positive correlation with 13C content (p < 0.01, R2 between 0.96 and 0.99). This current research provides a new idea and method for the control of A. philoxeroides, but large-scale popularization remains to be studied.


Assuntos
Alelopatia , Amaranthaceae , Plantas Daninhas , Plântula , Isótopos , Feromônios
11.
Braz J Biol ; 83: e271425, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37341252

RESUMO

Medicinal plant species are genetically engineered to obtain higher production of biomass and specific secondary metabolites, which can be used in the pharmaceutical industry. The aim of the present study was to evaluate the effect of Pfaffia glomerata (Spreng.) Pedersen tetraploid hydroalcoholic extract on the liver of adult Swiss mice. The extract was prepared from the plant roots and given to the animals by gavage, for 42 days. The experimental groups were treated with water (control), Pfaffia glomerata tetraploid hydroalcoholic extract (100, 200 and 400 mg/kg) and Pfaffia glomerata tetraploid hydroalcoholic extract discontinuously (200 mg/kg). The last group received the extract every 3 days, for 42 days. The oxidative status, mineral dynamics, and cell viability were analysed. The liver weight and the number of viable hepatocytes were reduced, despite the increased cell's number. Increased levels of malondialdehyde and nitric oxide, and changes in iron, copper, zinc, potassium, manganese and sodium levels were observed. aspartate aminotransferase levels were increased while alanine aminotransferase levels were decreased due to BGEt intake. Our results showed that BGEt induced alterations of oxidative stress biomarkers leading to liver injury, which was associated with a reduction in the number of hepatocytes.


Assuntos
Amaranthaceae , Tetraploidia , Animais , Camundongos , Fígado , Estresse Oxidativo , Extratos Vegetais/toxicidade
12.
Molecules ; 28(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298930

RESUMO

The genus Anabasis is a member of the family Amaranthaceae (former name: Chenopodiaceae) and includes approximately 102 genera and 1400 species. The genus Anabasis is one of the most significant families in salt marshes, semi-deserts, and other harsh environments. They are also renowned for their abundance in bioactive compounds, including sesquiterpenes, diterpenes, triterpenes, saponins, phenolic acids, flavonoids, and betalain pigments. Since ancient times, these plants have been used to treat various diseases of the gastrointestinal tract, diabetes, hypertension, and cardiovascular diseases and are used as an antirheumatic and diuretic. At the same time, the genus Anabasis is very rich in biologically active secondary metabolites that exhibit great pharmacological properties such as antioxidant, antibacterial, antiangiogenic, antiulcer, hypoglycemic, hepatoprotective, antidiabetic, etc. All of the listed pharmacological activities have been studied in practice by scientists from different countries and are presented in this review article to familiarize the entire scientific community with the results of these studies, as well as to explore the possibilities of using four plant species of the genus Anabasis as medicinal raw materials and developing medicines based on them.


Assuntos
Amaranthaceae , Chenopodiaceae , Humanos , Chenopodiaceae/microbiologia , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Compostos Fitoquímicos/farmacologia , Etnofarmacologia
13.
J Ethnopharmacol ; 314: 116680, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37230282

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Pfaffia glomerata (Spreng.) Pedersen has traditionally been used as a tonic and a stimulant by the Brazilian population. It shows higher biomass accumulation and production of secondary compounds, such as the phytosterol 20-hydroxyecdysone. AIMS: The present study aimed to evaluate the effects of the hydroalcoholic extract of the root of tetraploid P. glomerata (BGEt) on testicular parenchyma, and its implications on fertility. MATERIAL AND METHODS: Adult Swiss mice were divided as: control (water) and sildenafil citrate (7 mg/kg), BGEt at 100, 200, and 400 mg/kg, and BGEtD 200 mg/kg (treated with BGE every three days). Males (n = 4/group) were mated with normal untreated adult females to assess fertility rates, while other animals (n = 6/group) were euthanized for testis, epididymis, and oxidative stress analyses. RESULTS: Increase in tubule diameter and epithelium height in the discontinuous group, in addition to an increase in the proportion of tubules with moderate pathologies was observed. The pre-implantation loss was lower in all treated groups. The post-implantation loss was significantly increased in all treated groups, except for the lowest BGEt dose. BGEt intake caused a decrease in daily sperm production, along with the number and quality of sperm in the epididymis. Changes were observed in protein carbonylation and hydrogen peroxide and nitric oxide levels, characterizing oxidative stress. CONCLUSIONS: The hydroalcoholic extract of P. glomerata tetraploid altered sperm and testicular parameters, compromising embryonic development after implantation.


Assuntos
Amaranthaceae , Tetraploidia , Masculino , Camundongos , Gravidez , Animais , Feminino , Testículo , Epididimo , Espermatozoides , Fertilidade , Desenvolvimento Fetal , Contagem de Espermatozoides , Sementes
14.
Environ Sci Pollut Res Int ; 30(21): 59443-59448, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37004615

RESUMO

We examined the effects of copper and lead on the antioxidant enzyme response of Alternanthera philoxeroides and Nasturtium officinale using a benchtop luminometer. Alternanthera philoxeroides is a nonnative invasive plant species that has spread throughout the wetland ecosystem in the southern part of the USA. Its invasion is facilitated by its ability to thrive in a wide range of abiotic conditions. Nasturtium officinale is an aquatic plant that is sensitive to relatively low amounts of pollution and is most commonly found in springs and shallow bodies of water. While A. philoxeroides tolerates organic pollution and heavy metals, N. officinale exhibits stress at low levels of pollution. Alternanthera philoxeroides antioxidant enzyme production was unaffected by increasing concentrations of both copper and lead. The antioxidant enzyme response of N. officinale showed a significant increase when plants were exposed to 10 and 25 ppm lead. Endogenous peroxidase concentrations of the control plants were also compared showing that A. philoxeroides possessed a significantly higher concentration of peroxidases than N. officinale. We hypothesize that a higher endogenous peroxidase concentration may be a mechanism that hyperaccumulator plants use to tolerate inhospitable concentrations of copper and lead.


Assuntos
Jacarés e Crocodilos , Amaranthaceae , Metais Pesados , Nasturtium , Animais , Peroxidase , Ecossistema , Antioxidantes/farmacologia , Cobre/farmacologia , Peroxidases , Metais Pesados/farmacologia , Plantas , Espécies Introduzidas
15.
Appl Biochem Biotechnol ; 195(8): 4965-4982, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37119502

RESUMO

Natural pigments are components very important in the dye industry. The betalains are pigments found in plants from Caryophyllales order and are relevant in the food manufacturing. The main source of betalains is beetroot, which has unfavorable aftertaste. Therefore, the demand for alternative species producing betalains has increased. Elicitor molecules such as methyl jasmonate (MeJA) induce metabolic reprogramming acting in the biosynthesis of specialized metabolites and can enhance pigment concentrations. Here, we used this strategy to identify if treatment with MeJA at 100 µM can promote the accumulation of betalains and other bioactive compounds in Alternanthera philoxeroides and Alternanthera sessilis. We performed the gene expression, concentration of betalains, phenols, flavonoids, amino acids (phenylalanine and tyrosine), and antioxidant activity. The results showed that MeJA treatment increased betalains and other bioactive compounds in the two Alternanthera species but A. sessilis had a better performance. One key factor in this pathway is related to the phenylalanine and tyrosine concentration. However, the species have distinct metabolic regulation: in A. philoxeroides, high concentrations of betalain pigments increase the tyrosine concentration and gene expression (include ADH) under MeJA and in A. sessilis, high concentrations of betalain pigments reduce the gene expression and tyrosine concentration after 2 days under MeJA. This study brings new questions about betalain biosynthesis and sheds light on the evolution of this pathway in Caryophyllales.


Assuntos
Amaranthaceae , Betalaínas , Pigmentos Biológicos , Amaranthaceae/genética , Amaranthaceae/metabolismo , Betalaínas/biossíntese , Pigmentos Biológicos/análise , Fenilalanina , Tirosina , Redes e Vias Metabólicas , Regulação da Expressão Gênica de Plantas , Flavonoides/análise , Fenóis/análise , Antioxidantes/análise
16.
Molecules ; 28(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37110597

RESUMO

Plant-derived compounds and their extracts are known to exhibit chemo preventive (antimicrobial, antioxidant and other) activities. The levels of such chemo preventive compounds vary depending on environmental factors, including the regions where they grow. Described in this study are: (i) a phytochemical analysis of the two plants grown in the desert environment of Qatar, viz., Anastatica hierochuntica and Aerva javanica; (ii) the antibacterial, antifungal and antioxidant activities of various solvent extracts of these plants; (iii) a report on the isolation of several pure compounds from these plants. The phytochemical screening indicated the presence of glycosides, tannins, flavonoids, terpenoids, saponins, phenol and anthraquinones in various extracts of each of the plants. Antibacterial and antioxidant activities were studied using agar diffusion and DPPH methods, respectively. The extracts of Anastatica hierochuntica as well as Aerva javanica inhibit the growth of both gram-positive and gram-negative bacterial species. Various extracts of the two plants also exhibited higher or similar antioxidant activities as those of the standard antioxidants, α-tocopherol and ascorbic acid. The extracts of these plants were further purified by HPLC and characterized by IR and NMR techniques. This process has led to identification of ß-sitosterol, campesterol and methyl-9-(4-(3,4-dihydroxy-1'-methyl-5'-oxocyclohexyl)-2-hydroxycyclohexyl)nonanoate from Anastatica hierochuntica, and lupenone, betulinic acid, lupeol acetate and persinoside A and B from Aerva javanica. The results reported herein suggests that Anastatica hierochuntica and Aerva javanica are potent sources of phytomedicines.


Assuntos
Amaranthaceae , Extratos Vegetais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antioxidantes/farmacologia , Catar , Compostos Fitoquímicos/farmacologia , Antibacterianos/farmacologia , Amaranthaceae/química
17.
Environ Sci Pollut Res Int ; 30(17): 49197-49214, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36773264

RESUMO

Cisplatin (CIS) is an effective chemotherapeutic drug used for the treatment of many types of cancers, but its use is associated with adverse effects. Nephrotoxicity is a serious side effect of CIS and limits its therapeutic utility. Haloxylon salicornicum is a desert shrub used traditionally in the treatment of inflammatory disorders, but neither its flavonoid content nor its protective efficacy against CIS nephrotoxicity has been investigated. In this study, seven flavonoids were isolated from H. salicornicum methanolic extract (HSE) and showed in silico binding affinity with NF-κB, Keap1, and SIRT1. The protective effect of HSE against CIS nephrotoxicity was investigated. Rats received HSE (100, 200, and 400 mg/kg) for 14 days followed by a single injection of CIS. The drug increased Kim-1, BUN, and creatinine and caused multiple histopathological changes. CIS-administered rats showed an increase in renal ROS, MDA, NO, TNF-α, IL-1ß, and NF-κB p65. HSE prevented tissue injury, and diminished ROS, NF-κB, and inflammatory mediators. HSE enhanced antioxidants and Bcl-2 and downregulated pro-apoptosis markers. These effects were associated with downregulation of Keap1 and microRNA-34a, and upregulation of SIRT1 and Nrf2/HO-1 signaling. In conclusion, H. salicornicum is rich in flavonoids, and its extract prevented oxidative stress, inflammation, and kidney injury, and modulated Nrf2/HO-1 and SIRT1 signaling in CIS-treated rats.


Assuntos
Injúria Renal Aguda , Amaranthaceae , Cisplatino , Flavonoides , Animais , Ratos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/prevenção & controle , Injúria Renal Aguda/patologia , Apoptose , Cisplatino/toxicidade , Flavonoides/farmacologia , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Rim , Fator 2 Relacionado a NF-E2/metabolismo , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 1/metabolismo , Amaranthaceae/química
18.
PLoS One ; 18(1): e0280866, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36689420

RESUMO

Allelopathy has been considered a good explanation for the successful invasion of some invasive plants. However, the real latitudinal and longitudinal allelopathic effects on native species have rarely been documented since many exotics have spread widely. We conducted a Petri dish experiment to determine the latitudinal and longitudinal allelopathic patterns of an invasive alligator weed (Alternanthera philoxeroides) on a common crop (Lactuca sativa) in China, and find what determines the allelopathic intensity. The results showed that the allelopathic effects of A. philoxeroides increased with the latitude while decreased with the longitude. This indicated that A. philoxeroides used its allelopathy to gain competitive advantages more in its recent invaded communities than that in its early invaded ones as A. philoxeroides is expanding from southeast China to northwest China. Furthermore, we found that the allelopathic intensity of A. philoxeroide was negatively correlated to the leaf contents of soluble carbohydrate (SC), carbon (C) and nitrogen (N), but that was positively correlated to the leaf contents of soluble protein (SP), free amino acids (FAA), plant polyphenol (PP), phosphorus (P) and potassium (K). These results suggested that the allelopathic intensity of A. philoxeroide was more determined by the limited P and K nutrients as well as the intermediate allelochemicals (SP, FAA, PP) rather than the unlimited C, N and SC. Thus, we can speculate that the negative or positive effects of plant aqueous extracts are a function of not only the extract concentrations but also the trade-offs between inhibition and promotion of all components in the extracts. Then we could reduce the allelopathic effects of A. philoxeroide by controlling the component contents in the plant tissues, by fertilization or other managements, especially in the plant recent invaded communities.


Assuntos
Jacarés e Crocodilos , Amaranthaceae , Animais , Plantas Daninhas , Espécies Introduzidas , Alelopatia , China , Extratos Vegetais
19.
Protoplasma ; 260(2): 467-482, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35788779

RESUMO

Plants adjust their complex molecular, biochemical, and metabolic processes to overcome salt stress. Here, we investigated the proteomic and epigenetic alterations involved in the morphophysiological responses of Pfaffia glomerata, a medicinal plant, to salt stress and the demethylating agent 5-azacytidine (5-azaC). Moreover, we investigated how these changes affected the biosynthesis of 20-hydroxyecdysone (20-E), a pharmacologically important specialized metabolite. Plants were cultivated in vitro for 40 days in Murashige and Skoog medium supplemented with NaCl (50 mM), 5-azaC (25 µM), and NaCl + 5-azaC. Compared with the control (medium only), the treatments reduced growth, photosynthetic rates, and photosynthetic pigment content, with increase in sucrose, total amino acids, and proline contents, but a reduction in starch and protein. Comparative proteomic analysis revealed 282 common differentially accumulated proteins involved in 87 metabolic pathways, most of them related to amino acid and carbohydrate metabolism, and specialized metabolism. 5-azaC and NaCl + 5-azaC lowered global DNA methylation levels and 20-E content, suggesting that 20-E biosynthesis may be regulated by epigenetic mechanisms. Moreover, downregulation of a key protein in jasmonate biosynthesis indicates the fundamental role of this hormone in the 20-E biosynthesis. Taken together, our results highlight possible regulatory proteins and epigenetic changes related to salt stress tolerance and 20-E biosynthesis in P. glomerata, paving the way for future studies of the mechanisms involved in this regulation.


Assuntos
Amaranthaceae , Proteômica , Azacitidina/farmacologia , Cloreto de Sódio/farmacologia , Tolerância ao Sal/genética , Epigênese Genética , Proteínas de Plantas/metabolismo , Estresse Fisiológico
20.
New Phytol ; 237(6): 2347-2359, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36200166

RESUMO

Aboveground herbivores and soil biota profoundly affect plant invasions. However, how they interactively affect plant invasions through plant-soil feedbacks (PSFs) remains unclear. To explore how herbivory by the introduced beetle Agasicles hygrophila affects Alternanthera philoxeroides invasions in China, we integrated multiyear field surveys and a 2-yr PSF experiment, in which we examined how herbivory affects PSFs on the performance of native and invasive plants and the introduced beetles. Despite increased herbivory from A. hygrophila, A. philoxeroides dominance over co-occurring congeneric native Alternanthera sessilis remained constant from 2014 to 2019. While occurring at lower abundances, A. sessilis experienced similar herbivore damage, suggesting apparent competitive effects. Our experiments revealed that herbivory on A. philoxeroides altered soil microbial communities, prolonged its negative PSF on A. sessilis, and decreased A. hygrophila larvae performance on the next-generation invasive plants. Consequently, A. hygrophila larvae performed better on leaves of natives than those of invasives when grown in soils conditioned by invasive plants defoliated by the introduced beetles. Our findings suggest that aboveground herbivory might promote rather than suppress A. philoxeroides invasion by enhancing its soil-mediated self-reinforcement, providing a novel mechanistic understanding of plant invasions. These findings highlight the need to incorporate an aboveground-belowground perspective during the assessment of potential biocontrol agents.


Assuntos
Amaranthaceae , Besouros , Animais , Herbivoria , Espécies Introduzidas , Plantas , Larva , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...